Device Offers a Roadside Dope Test

Quick fix: Philips' drug tester uses a cartridge containing magnetic nanoparticles and a handheld analyzer. Frustrated total internal reflection (FTIR) is used to detect five major recreational drugs in 90 seconds.Quick fix: Philips’ drug tester uses a cartridge containing magnetic nanoparticles and a handheld analyzer. Frustrated total internal reflection (FTIR) is used to detect five major recreational drugs in 90 seconds.Later this year, Philips will introduce a handheld electronic device that uses magnetic nanoparticles to screen for five major recreational drugs.

The device is intended for roadside use by law enforcement agencies and includes a disposable plastic cartridge and a handheld analyzer. The cartridge has two components: a sample collector for gathering saliva and a measurement chamber containing magnetic nanoparticles. The particles are coated with ligands that bind to one of five different drug groups: cocaine, heroin, cannabis, amphetamine, and methamphetamine.

Philips began investigating the possibility of building a magnetic biodetector in 2001, two years after a team of researchers at the Naval Research Laboratory (NRL) in Washington, DC, first used magnetic sensors similar to those employed in hard drives to sniff out certain biowarfare agents. The NRL scientists labeled biological molecules designed to bind to target agents with magnetic microbeads, and then scanned for the tagged targets optically and magnetically. The latter approach used the same giant magnetoresistant (GMR) sensors that read the bits on an iPod’s hard drive. They quickly developed a shoebox-sized prototype capable of detecting toxins, including ricin and anthrax.

Philips initially developed both a GMR sensor and an optical one that relies on frustrated total internal reflection (FTIR)–the same phenomenon that underlies fingerprint scanners and multitouch screens. The company decided to go the FTIR route in order to exploit its expertise in building optical sensors for consumer electronics devices, says Jeroen Nieuwenhuis, technical director of Philips Handheld Immunoassays, the division responsible for commercializing the biosensor technology, which goes by the trade name Magnotech.

Moving to an optical detection method also allowed Philips to simplify the test cartridges that the device employs, making them easier to mass-produce, says Nieuwenhuis. With the current FTIR-based system, “we can make simpler cartridges in larger quantities more easily,” he adds.

Once the device’s sample collector has absorbed enough saliva, it automatically changes color and can then be snapped into the measurement chamber, where the saliva and nanoparticles mix. An electromagnet speeds the nanoparticles to the sensor surface, different portions of which have been pretreated with one of the five target-drug molecules. If traces of any of the five drugs are present in the sample, the nanoparticles will bind to them. If the sample is drug free, the nanoparticles will bind to the drug-coated sensor surface instead.

The orientation of the magnetic field that first drew the nanoparticles to the sensor is then reversed, pulling away any nano-labeled drug molecules that may accidentally have stuck to the sensor surface but leaving legitimately bound ones in place. This last magnetic trick promises to reduce what Larry Kricka, a clinical chemist at the University of Pennsylvania who recently co-authored an article in Clinical Chemistry on the use of magnetism in point-of-care testing, calls “a major restraint in such assays”: the unintentional capture of molecular labels on the test surface, a leading cause of both false positives and false negatives. Kricka is not involved with Philips but does serve as a consultant to T2 Biosciences, a Cambridge, MA, firm that promotes a magnetic biosensor based on MRI technology.

During the analysis phase, a beam of light is bounced off the sensor. Any nanoparticles bound to the surface will change its refractive index, thereby altering the intensity of the reflected light and indicating the concentration of drugs in the sample. By immobilizing different drug molecules on different portions on the sensor surface, the analyzer is able to identify the drug traces in question. An electronic screen displays instructions and a simple color-coded readout of the results.

The test takes less than 90 seconds and can detect drugs at concentrations measured in parts-per-billion using a single microliter of saliva. The sensor is capable of even greater sensitivity–it has been used to detect cardiac troponin, a commonly used indicator of heart attack, at concentrations 1,000 times lower.

Philips plans ultimately to enter the healthcare market. It is working on a platform capable of testing blood as well as saliva and is seeking partners that can help expand its testing menu by providing it with additional biomarkers.

Other researchers have built experimental devices to magnetically detect a wide range of biomolecules in minuscule samples of blood or saliva at extremely low concentrations. Often this involves using microfluidic or magnetic forces to quickly shepherd the magnetically labeled molecules through scanners–though a group at the University of Utah has even built a prototype in which a sample-laden stick is swiped across a GMR sensor, like a credit-card through a reader.

The combination of high sensitivity, low sample volumes, miniaturization, speed, and ease of use has raised hopes for a handheld biosensor that could perform sophisticated tests with high accuracy.

“Everyone’s trying to get there,” says Kricka. “The question is who’s going to win?” With Philips set to introduce its drug tester in Europe by the end of the year in partnership with the British diagnostics firm Cozart, the consumer electronics maker appears poised to take the prize.

– Article from Technology Review on Aug 4, 2009.



  1. greg williams on

    this drug war isn’t about fairness folks.
    this is about total control.
    this is about intimidation.
    this is about protection for those who fear losing the most.
    corporate drugs
    those drunks who invent such antifreedom tools
    etc etc

  2. Anonymous on

    my concern with these things is the accuracy.. if i smoke a bowl at midnight and get pulled over driving to work the next day at 7 or 8 am, will it still show in my system? if so, it is flawed and will not work.. i mean pot stays in the system for a month.. how fair is that.. sir, you have thc in your system.. we are arresting you for drugged driving.. i wouldn’t think it would stand in court because a 30ish days is by far too big of a window.. at least one with logic would think.. o that’s right, our government is full of dip shits who wish they had a clue what logic was..
    keep forgetting who i am talking about here..

  3. Anonymous on

    Welcome to the XXIst century.So Georges Orwell was right in his 1984 novel.Big brother is there and watching you.Paranoia is rampant.
    The world is split in two: The testers and the testees.
    The testers are the big Corps,the Insurance companies,the police,the law,the justice,the government,the military.Knowledge and technology
    used to enslave the humans, to make the system more inhuman than ever.Science and knowledge that were supposed to free and liberate humans.False promises.
    Mr.President, I don’t like the world you are trying to shape around me.I think you can stick up all your probes
    you know where and push the ON button.

  4. Anonymous 3 on

    Those need to be outlawed quick cause how does one set a level of intoxication for cannabis?

    I due hope Phillips makes some life saving equipment with this technology but why did you have to include cannabis testing in this device?

  5. Anonymous on

    Evil Evil Evil.

    Now instead of police having to hold you down and forceably take blood if they choose, all they have to say is “just spit in this cup” to any scared citizen. And how long do these molecules stay in your saliva? 30% dui increases due to people using drugs 8 hours previously?

    More private prison system/ police state capatalists. officers know when a driver is visibly too spun on narcotics or drunk to drive a car, and ALREADY have an accurate device for the substance most responsible/related to driving accidents-the breathalizer.